Python Model
The program template will guide you in implementing the steps involved in extracting linguistic features, reducing dimensionality, modeling cognitive traits, and optimizing the entire pipeline.
Model
pythonCopy code# Install required libraries first (if not installed)
# !pip install torch transformers scikit-learn
import torch
from torch import nn
from transformers import BertTokenizer, BertModel
from sklearn.decomposition import PCA
from sklearn.metrics import mean_squared_error
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
# Step 1: Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
bert_model = BertModel.from_pretrained('bert-base-uncased')
# Step 2: Function to extract BERT embeddings from text
def extract_bert_embeddings(text_list):
inputs = tokenizer(text_list, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = bert_model(**inputs)
# Use mean pooling to get sentence embeddings
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings
# Step 3: Reduce dimensionality of embeddings using PCA
def perform_pca(embeddings, num_components=50):
pca = PCA(n_components=num_components)
reduced_embeddings = pca.fit_transform(embeddings)
return reduced_embeddings
# Step 4: Define the neural network model for cognitive trait prediction
class CognitiveTraitModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(CognitiveTraitModel, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, output_dim)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Step 5: Generate dummy data (replace with actual data)
texts = ["This is an example sentence.", "How are you doing today?", "I love learning about AI."]
labels = [[0.5], [0.7], [0.8]] # Example cognitive trait labels (replace with real data)
# Step 6: Process the data (convert text to embeddings and apply PCA)
embeddings = extract_bert_embeddings(texts).numpy()
reduced_embeddings = perform_pca(embeddings)
# Step 7: Prepare the dataset and DataLoader
input_tensor = torch.tensor(reduced_embeddings, dtype=torch.float32)
label_tensor = torch.tensor(labels, dtype=torch.float32)
dataset = TensorDataset(input_tensor, label_tensor)
train_loader = DataLoader(dataset, batch_size=1, shuffle=True)
# Step 8: Initialize the model, loss function, and optimizer
input_dim = reduced_embeddings.shape[1]
output_dim = 1 # Predicting a single cognitive trait (can be extended)
model = CognitiveTraitModel(input_dim, output_dim)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Step 9: Train the model
num_epochs = 100
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs}"):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}")
# Step 10: Evaluate the model
model.eval()
predictions = []
true_labels = []
with torch.no_grad():
for inputs, labels in train_loader:
outputs = model(inputs)
predictions.append(outputs.numpy())
true_labels.append(labels.numpy())
predictions = np.concatenate(predictions, axis=0)
true_labels = np.concatenate(true_labels, axis=0)
# Step 11: Compute the mean squared error (MSE) for evaluation
mse = mean_squared_error(true_labels, predictions)
print(f"Mean Squared Error: {mse}")Instructions for Usage:
What to Expect:
Key
Key Components of the Framework:
Detailed Methodology & Computation:
Code Implementation Highlights:
Computational Complexity:
Last updated